Les échanges internationaux des produits de haute technologie

Elizabeth Kremp
Valérie Larroumets*

Les échanges des produits de haute technologie occupent une place déterminante dans le commerce mondial et la spécialisation d’un pays dans la haute technologie est considérée comme une preuve de dynamisme. De nombreux travaux tentent de préciser cette notion de « produit de haute technologie », afin de mesurer l’ampleur réellement prise par ce commerce. L’article du CEPII résume l’apport méthodologique de ces études ; puis à l’aide de la banque de données CHELEM, il analyse l’évolution de ces échanges depuis 1967 en isolant les produits et les pays qui expliquent le développement rapide de ce type de produits.

Les produits de haute technologie occupent une part croissante dans les échanges mondiaux. De ce constat, découle une causalité souvent avancée : un pays serait d’autant plus compétitif qu’il est bien placé sur le marché des produits de haute technologie.

Le but de cet article est de situer les grandes mutations dans les échanges de ces produits depuis quinze ans. Quels sont ces produits, d’où sont-ils exportés et quelle est la situation actuelle de leur marché, telles sont les questions étudiées.

* Elizabeth Kremp est chargé de mission au département « dynamique des grandes économies » du CEPII ; Valérie Larroumets a effectué son stage de fin d’étude de l’Ecole centrale de Paris au CEPII, grâce à un financement du Commissariat général du Plan.
Les limites de l'étude sont fixées par l'outil utilisé : la base CHELEM-commerce international. Ses qualités sont sa couverture mondiale des échanges, avec des données cohérentes entre elles, distinguant 72 catégories de produits qui couvrent la totalité des biens échangés, sur la période 1967-1983. En contrepartie de cette couverture mondiale, les données ne sont disponibles qu'en valeur, et il n'est pas possible de distinguer différents éléments à l'intérieur d'une catégorie de produits. Le repérage des produits de haute technologie parmi ces 72 catégories suppose donc certains arbitrages ; il est fait en comparant les différentes définitions proposées par les organismes internationaux, ou le département du Commerce américain. Les concepts retenus par ces instituts sont ici d'abord résumés, mais aucune réflexion de méthode sur le choix de ces concepts n'a été effectuée dans le cadre de cette étude.

Ces limites n'empêchent pas de tirer des enseignements quant au rôle de quelques produits de l'électronique, la percée encore timide mais certaine des pays asiatiques au détriment de l'Europe, et l'affaiblissement de la position américaine.

Les produits de haute technologie : des échanges particulièrement dynamiques

La haute technologie : concepts et mesures

Les recherches sur les échanges de haute technologie ont été initiées aux Etats-Unis pour analyser la compétitivité américaine, et encore maintenant, ces études se sont peu généralisées dans les organismes nationaux. La plupart d'entre elles cherchent à identifier les produits de haute technologie par des tests empiriques à l'aide d'un ou plusieurs indicateurs 1. Se pose d'abord le problème du choix de ces indicateurs pour mesurer l'intensité technologique : la part des dépenses de recherche et développement dans la valeur ajoutée ou dans les livraisons, le nombre d'ingénieurs ou plus largement de personnel qualifié dans le personnel total de chaque

1. Une autre catégorie de travaux cherche à identifier les produits dont les exportations sont influencées par la technologie, sans qu'aucune hypothèse ne soit faite a priori sur la définition des produits haute technologie. Ils utilisent des méthodes statistiques (régressions transversales, simple corrélation) entre exportations, ou part de marché à l'exportation et part des brevets déposés, intensité de recherche-développement, PNB,... (Pavitt et Soete, Lacroix, Walker). L'IFO a également développé une méthode fondée sur la théorie du cycle du produit de Vernon. Définir les produits de haute technologie consiste alors à examiner les parts de marché mondial des pays en voie de développement. Plus elles sont fortes, moins le produit comporte « d'intensité technologique ». La nomenclature ainsi définie présente l'intérêt de ne pas être fixe dans le temps mais elle impose un classement des pays entre PVD et non PVD assez contestable. Les résultats sont notamment différents des autres nomenclatures connues, incluant des produits tels le ciment ou le bois-papier, et excluant le matériel de télécommunication, l'optique, les appareils électriques.
branche, les investissements... Deux autres difficultés se présentent : le niveau de désagrégation des données par produit ne permet jamais d’isoler complètement les produits à haute intensité technologique des autres ; les méthodes ne prenant pas en compte la variation de l’intensité technologique d’un même produit dans le temps, les résultats sont liés à l’année de base retenue.

Les travaux de la Fondation nationale des sciences aux États-Unis (NSF) et le département du Commerce américain distinguent trois nomenclatures principales basées sur deux concepts différents : la première fait référence à un concept de branche, tandis que les deux autres s’appuient sur un concept de produit.

M. Boretsky [2] [3] fonde sa sélection sur trois indicateurs industriels : le pourcentage de dépenses de recherche et développement dans la valeur ajoutée de la branche, la proportion de personnel scientifique et la proportion de main-d’œuvre qualifiée dans les employés. Du fait du concept retenu, il ne fait pas de distinction entre les produits d’une même branche industrielle. La nomenclature de M. Boretsky, appelée D1 par la suite, est définie à partir de la classification industrielle américaine SIC.

L.A. Davis [6] précise la définition des dépenses de recherche et développement en distinguant celles concernant le développement proprement dit du produit et celles concernant la fabrication du produit. Pour cela, il utilise une matrice d’input-output. De plus, il ne retient que les produits dont l’intensité technologique est significativement plus élevée, au lieu de se baser sur la valeur moyenne. La nomenclature D3 retenue est plus restrictive que D2 mais contient plus de produits chimiques que D1.

La banque Paribas retient une définition proche de D2, basée sur les travaux de la Fondation nationale des sciences des États-Unis et qui inclut l’armement, alors que la CEE tout en prenant les mêmes critères de pourcentage de recherche et développement dans la valeur ajoutée, qualifie de haute technologie une gamme plus large de produits que dans les études évoquées précédemment. Elle inclut en particulier l’industrie automobile, poste à la fois important par le volume et par l’avan-
TABLEAU 1

Correspondance entre les différentes définitions des produits de haute technologie et CHELEM

<table>
<thead>
<tr>
<th>Nomenclature CHELEM</th>
<th>Concept par branche</th>
<th>Concept par produit</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part de chaque produit dans les échanges de produits manufacturés en 1983 (en %)</td>
<td>D₁ (Boretsky) 2 critères : • % de R & D dans la valeur ajoutée industrielle. • Proportion de scientifiques et d'ingénieurs dans l'emploi industriel</td>
<td>D₂ (Kelly) Seul critère : • dépenses de R & D rapportées aux livraisons</td>
<td>Même critère que D₂ mais utilise une matrice d'input output pour distinguer la R & D directe et la R & D indirecte</td>
</tr>
<tr>
<td>FC Moteurs, turbines, pompes</td>
<td>4,8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FH Armements</td>
<td>0,5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FI Instruments de mesure et de précision</td>
<td>2,2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FJ Horlogerie</td>
<td>0,6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FK Appareils d'optique</td>
<td>1,0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FL Composants électroniques</td>
<td>1,8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FM Électronique grand public</td>
<td>1,8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FN Matériel de télécommunication</td>
<td>2,0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FO Machines de bureau</td>
<td>3,3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FP Appareils électroménagers</td>
<td>0,8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FQ Gros matériel électrique</td>
<td>1,0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FR Appareils et fournitures électriques</td>
<td>3,6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FT Automobiles particulières</td>
<td>6,7</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FU Véhicules utilitaires</td>
<td>2,8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FW Produits de la construction aéronautique et navale</td>
<td>2,7</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GA Produits de la chimie minérale</td>
<td>1,9</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>GB Engrais et produits chimiques</td>
<td>1,0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GC Produits de la chimie organique</td>
<td>3,6</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>GD Peintures, laques</td>
<td>0,7</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GF Produits pharmaceutiques</td>
<td>1,4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GG Plastiques, fibres et résines</td>
<td>3,5</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Remarques

- Assez peu de chimie
- Chimie importante (favorable à la CEB)
- Moins d'électronique que dans D₂
- Nomenclature plutôt défavorable au Japon
- Proche de D₂
- Armement explicite
- Assez peu de chimie automobile : défavorable aux EU

Les ronds désignent des agrégats dont une partie seulement est incluse dans la définition retenue. Par la suite ces produits ne sont pas pris en compte dans les calculs.
tage qu’il induit pour le Japon et pour l’Europe.

Ainsi, tous les travaux retiennent une définition fondée sur l’intensité technologi-que des produits dans l’industrie américaine. Lorsque l’on applique ces nomenclatures à la comparaison internationale, il est donc implicitement supposé que les techni ques de production sont partout identiques, hypothèse habituelle de la théorie des échanges internationaux.

Le tableau 1 tente en nomenclature CHELEM une correspondance entre les diffé-rentes définitions de produits de haute technologie. Les niveaux d’agrégation variant entre les définitions des produits (CHELEM est de toute évidence trop agrégé pour une étude fouillée), des choix qui comportent une part d’arbitraire ont été faits. Les ambiguïtés les plus importantes sont soulignées par des astérisques.

Une forte progression quelle que soit la définition

Toutes ces définitions sont plus complémentaires que contradictoires. Les principales différences concernent la quantité de produits chimiques retenue (produits G), la présence ou l’absence des moteurs turbines et pompes, et celles des automobiles particulières et véhicules utilitaires.

Le graphique 1 permet de comparer ces différentes nomenclatures et leur évolution temporelle. Pour chaque définition, la part mondiale des exportations de pro-duits de haute technologie dans les exportations de produits manufacturés est calculée. Ce calcul est aussi effectué pour deux autres ensembles de produits : — le premier ensemble, appelé ensuite « Unanimité » correspond à une définition très stricte des produits de haute technologie. Seuls les produits retenus par chacune des cinq définitions du tableau 1 (D1, D2, D3, CEE, Paribas) sont considérés ici ; — le deuxième dénommé « Majorité » retient les produits classés dans les produits de haute technologie par au moins trois des cinq définitions présentées ; ces pro-duits sont : moteurs turbines et pompes, matériel de précision et électronique, gros matériel électrique, aéronautique, produits pharmaceutiques et plastiques et fibres ; cette définition, sans être trop stricte, permet d’éliminer les produits dont la pré-sence parmi les produits de haute technologie est très contestée (armements, véhicules utilitaires...).

Deux enseignements peuvent être tirés de ce graphique. Le premier concerne l’évo-lution temporelle : quels que soient les produits retenus, et donc le poids que chaque nomenclature accorde aux produits de haute technologie, l’évolution de cette part est similaire sur la période étudiée : en augmentation nette de 1967 à 1983, avec une accélération sensible à partir de la fin de la décennie soixante-dix. En second lieu, les produits n’ont pas tous le même poids dans les échanges mondiaux. Ainsi, comme
GRAPHIQUE 1

Part des produits de haute technologie dans les exportations mondiales de produits manufacturés suivant différentes définitions.

En pourcentage

Source : CEPII, base CHELEM Commerce international (réseau harmonisé)

l'indique le tableau 1, la catégorie moteurs, turbines et pompes, qui n'a pas été retenue dans D1, représente près de 5 % des échanges de produits manufacturés. Par contre, certains produits chimiques, les engrais et produits chimiques pour l'agriculture, ainsi que les peintures, laques et vernis, ne font pas plus de 1 % des échanges de produits manufacturés. Ainsi la définition D3, plus proche de D2 par le nombre de produits retenus, est en niveau proche de D1.
Le rôle central de l'électronique

Pour comprendre pourquoi les différentes mesures de l'intensité des échanges de haute technologie donnent une image temporelle cohérente, une comparaison de l'évolution de chaque catégorie de produits a été effectuée.

Le graphique 2 rassemble les produits dynamiques, qui au cours de la période étudiée ont gagné plus de 0,5 point du marché des produits manufacturés échangés. Le graphique 3 regroupe les produits dont la part dans les produits manufacturés n'a que très peu augmenté sur cette période (les échelles des deux graphiques ne sont pas identiques). Le graphique 2 montre que presque tous les produits qui sont présents dans toutes les définitions sont catalogués comme dynamiques. Ce sont ces produits qui expliquent la part croissante des produits de haute technologie dans les échanges mondiaux et l'accélération de cette progression depuis 1979.

En fait six produits, dont quatre appartiennent à l'électronique, expliquent cette accélération. La croissance de la part des produits de haute technologie dans les échanges de produits manufacturés se situe entre 3,3 et 3,8 points entre 1979 et 1983 suivant la définition retenue, et les produits qui expliquent cette hausse sont dans l'ordre d'importance :

- Informatique et matériel de bureau 1,2 point
- Composants électroniques 0,6 point
- Matériel de télécommunication 0,5 point
- Aéronautique 0,4 point
- Appareils et instruments de mesure et de précision 0,4 point
- Electronique grand public 0,3 point

Total : 3,4 points

En revanche, exception faite des produits de la chimie organique de base, tous les produits chimiques, considérés comme produits de haute technologie, sont peu dynamiques (graphique 3).

Ainsi l'évolution du début des années quatre-vingt confirme et même renforce l'analyse faite pour la décennie soixante-dix qui mettait l'accent sur le rôle des produits électroniques pour expliquer la spécialisation et l'insertion internationale des différents pays [5].

Enfin, ces graphiques permettent d'identifier les produits qui donnent un profil heurté dans la nomenclature retenue par la CEE. La catégorie « automobiles particulières, motocycles et cycles » explique principalement ce profil, à laquelle il faut rajouter les « véhicules utilitaires » en 1974-1975.
GRAPHIQUE 2

Part des produits dynamiques dans les échanges de produits manufacturés.

En pourcentage

Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
Part des produits « peu dynamiques » dans les échanges de produits manufacturés.

En pourcentage

GG Plastiques, fibres
FU Véhicules utilitaires
GA Produits de la chimie minérale
GF Produits pharmaceutiques
FQ Gros matériel électrique
FK Appareils d’optique
GB Engrais et produits chimiques
FP Instruments de mesure et de précision
GD Peintures, laques
FJ Horlogerie
FH Armements

Source : CEPIL, base CHELEM Commerce international (réseau harmonisé).
La répartition par zone géographique

Avant de passer à une analyse plus détaillée du marché des produits de haute technologie, une dernière comparaison par région selon les différentes définitions permet de s’assurer qu’elles livrent des enseignements similaires. Le tableau 2 fournit la part relative des exportations de produits de haute technologie pour cinq pays ou zones suivant les différentes nomenclatures. Le graphique 4 donne pour une de ces définitions (« Majorité ») l’évolution temporelle. Enfin les graphiques 5A et 5B calculent les soldes de produits de haute technologie suivant les deux définitions CEE et « Majorité ».

Quelle que soit la définition retenue, on remarque la baisse de la part relative de la CEE, très nette à partir de 1979, la progression continue du Japon, qui double sa part au cours de la période, et celle toute aussi nette des nouveaux pays industria-

| TABLEAU 2 |

<p>| Part de chaque zone dans les exportations des produits de haute technologie |</p>
<table>
<thead>
<tr>
<th>Etats-Unis</th>
<th>Japon</th>
<th>CEE</th>
<th>NPI d'Asie : Taiwan, Hong-Kong, Corée du Sud, Singapour</th>
<th>Reste du monde</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>24,6</td>
<td>8,9</td>
<td>46,4</td>
<td>1,0</td>
</tr>
<tr>
<td>D2</td>
<td>24,4</td>
<td>7,7</td>
<td>46,5</td>
<td>0,8</td>
</tr>
<tr>
<td>D3</td>
<td>25,6</td>
<td>7,8</td>
<td>45,9</td>
<td>0,7</td>
</tr>
<tr>
<td>Paribas</td>
<td>26,5</td>
<td>7,3</td>
<td>44,8</td>
<td>0,6</td>
</tr>
<tr>
<td>CEE</td>
<td>23,7</td>
<td>7,4</td>
<td>45,9</td>
<td>0,6</td>
</tr>
<tr>
<td>Unanimité</td>
<td>26,2</td>
<td>8,0</td>
<td>45,5</td>
<td>0,7</td>
</tr>
<tr>
<td>1979</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>17,8</td>
<td>12,6</td>
<td>44,4</td>
<td>5,6</td>
</tr>
<tr>
<td>D2</td>
<td>18,2</td>
<td>11,7</td>
<td>44,8</td>
<td>4,5</td>
</tr>
<tr>
<td>D3</td>
<td>18,9</td>
<td>12,0</td>
<td>44,4</td>
<td>4,8</td>
</tr>
<tr>
<td>Paribas</td>
<td>19,1</td>
<td>10,6</td>
<td>45,1</td>
<td>4,0</td>
</tr>
<tr>
<td>CEE</td>
<td>16,6</td>
<td>15,5</td>
<td>42,8</td>
<td>4,0</td>
</tr>
<tr>
<td>Unanimité</td>
<td>19,3</td>
<td>12,2</td>
<td>43,8</td>
<td>4,9</td>
</tr>
<tr>
<td>1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>19,7</td>
<td>16,8</td>
<td>37,6</td>
<td>7,3</td>
</tr>
<tr>
<td>D2</td>
<td>19,7</td>
<td>15,5</td>
<td>37,8</td>
<td>5,9</td>
</tr>
<tr>
<td>D3</td>
<td>20,5</td>
<td>16,0</td>
<td>34,4</td>
<td>5,9</td>
</tr>
<tr>
<td>Paribas</td>
<td>20,6</td>
<td>13,8</td>
<td>38,7</td>
<td>5,0</td>
</tr>
<tr>
<td>CEE</td>
<td>17,2</td>
<td>20,8</td>
<td>35,4</td>
<td>5,0</td>
</tr>
<tr>
<td>Unanimité</td>
<td>20,9</td>
<td>16,3</td>
<td>36,9</td>
<td>6,0</td>
</tr>
</tbody>
</table>

Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
Part de chaque zone dans les exportations des produits de haute technologie (nomenclature « Majorité »)

1. Les NPI d’Asie comprennent Taïwan, Hong-Kong, la Corée du Sud et Singapour.
Source : CEPII, base CHELEM Commerce international (réseau harmonisé).

lisés (NPI) d’Asie, qui compense le déclin américain. La part du reste du monde reste stable sur toute la période. En retenant la définition de la CEE, qui inclut le secteur automobile, le déclin américain et la progression japonaise sont plus tranchés. Mais comme le montrent les graphiques 5A et 5B, si les soldes sont différents en valeur, ils décrivent le même type d’évolution. L’effet d’échelle n’atténue pas la croissance nippone et ne modifie pas les récentes difficultés européennes.
Les soldes des différentes zones en produits de haute technologie.

En milliards de dollars

5A : nomenclature "majorité"

Japon
USA
CEE
NPI Asie

5B : nomenclature "CEE"

Japon
CEE
NPI Asie
USA

Source: CEPII, base CHELEM Commerce international (réseau harmonisé).
Ces comparaisons entre les différentes nomenclatures conduisent à la conclusion qu’une seule définition suffit à mettre en évidence un certain nombre d’évolutions temporelles. Par la suite, la nomenclature « Majorité » sera retenue. Elle ne contient pas l’automobile mais inclut certains produits chimiques. Elle permet de souligner le rôle des produits électroniques dans l’intensification récente des échanges de produits de haute technologie et de mettre l’accent sur la percée japonaise, la stagnation européenne et le récent déclin américain.

Les rapports de force sur le marché de la haute technologie

En fait, comme le montre aussi le tableau précédent, quatre zones détiennent à elles seules 80 % du marché à l’exportation : Etats-Unis, Japon, CEE, et nouveaux pays industrialisés d’Asie.

Les zones en jeu

Le graphique 6 retrace, pour une dizaine de zones, l’évolution temporelle de leur solde en produits de haute technologie normé par un flux commercial moyen (indicateur de polarisation). Les soldes ainsi présentés sont relativisés par l’importance des échanges de produits manufacturés du pays, et leur configuration permet de mettre en évidence le caractère plus ou moins polarisé des excédents en produits de haute technologie.

Trois zones géographiques seulement, le Japon, les Etats-Unis et la CEE ont un solde positif. Les niveaux atteints en 1983 sont cependant fort différents. Ainsi, les produits de haute technologie forment un vrai pôle de compétitivité pour les Japonais, puisque leur solde représente plus de 40 % des échanges de produits manufacturés nippons, contre près de 12 % aux Etats-Unis et 5 % dans la Communauté européenne.

De plus, les Etats-Unis, et dans une moindre mesure la CEE sont les deux seules zones pour lesquelles l’indicateur de polarisation par rapport aux échanges baisse notablement. Les produits de haute technologie ne représentent pas pour ces deux zones un pôle de compétitivité aussi important que par le passé. Par contre, les nouveaux pays industrialisés d’Asie se distinguent : la progression de leur indicateur est spectaculaire (+ 21 points entre 1967 et 1983) et comparables à celle du Japon.

Enfin, bien que dans une position toujours très déficitaire, l’Europe méridionale connaît aussi une nette amélioration de sa situation (+ 16 points).

La polarisation* des échanges en produits de haute technologie (nomenclature « Majorité »).

En pourcentage

* On a calculé pour chaque zone, l'indicateur de polarisation $P = 100 \times \frac{S}{M}$.

S: solde en produits haute technologie pour la zone considérée.

M: flux commercial moyen (demi-somme des exportations et importations de produits manufacturés pour chaque zone considérée).

Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
Il convient toutefois de noter que l'évolution du solde commercial de chaque pays dépend, dans une large mesure, de facteurs macroéconomiques (rythmes relatifs de croissance, différentiels d'inflation, taux de change) qui affectent l'ensemble des échanges de produits manufacturés. Pour repérer les dynamiques de spécialisation, l'indicateur précédent doit donc être complété par un « indicateur de contribution au solde » (graphique 7). Celui-ci permet de situer la position relative des produits de haute technologie par rapport au mouvement général du solde manufacturier.

Dans le cas des États-Unis, l'industrie de haute technologie est ainsi placée dans une position singulière : tandis que le solde manufacturier connaît une chute accentuée depuis le début de la présente décennie (passant de + 20,5 milliards de dollars en 1980 à − 26,1 milliards de dollars en 1983), la dégradation est beaucoup moins marquée pour les produits de haute technologie. En termes relatifs, la position de l'industrie américaine reste donc favorable pour ces produits et, après une baisse sensible jusqu'en 1976, elle tend même à se redresser depuis cette date.

Au Japon, la position relative de l'industrie de haute technologie s'améliore également, mais elle n'est guère plus favorable que celle de l'ensemble du secteur manufacturier qui connaît un excédent croissant. Il est vrai que le poste le plus excédentaire est celui de l'industrie automobile, qui est exclue des produits de haute technologie dans la nomenclature retenue ici (« Majorité »). Les nouveaux pays industrialisés d'Asie se distinguent à nouveau par l'évolution de leur courbe. Si la contribution des produits de haute technologie à la formation du solde manufacturier reste toujours négative, leur position a néanmoins fortement progressé.

L'Europe se situe dans une situation très médiocre. Une analyse plus détaillée par pays (non reproduite ici) montre que la RFA et l'Italie connaissent une dégradation de leur position. Pour ces deux pays, la contribution des produits de haute technologie à la formation de l'excédent global en produits manufacturés s'affaiblit.

Le dynamisme à l'exportation des pays asiatiques

Le tableau 3 apporte un autre éclairage sur ces évolutions. Il indique les parts relatives des exportations et des importations de produits de haute technologie, par rapport aux produits manufacturés.

Les différents niveaux de ces ratios (entre 25 et 45 %) et leur progression d'amplitude inégale (jusqu'à + 165 % pour les exportations des pays d'Asie), conduisent à distinguer différents cas.
La contribution des échanges des produits de haute technologie au solde des produits manufacturés* (nomenclature « Majorité »).

En pourcentage

* Pour une zone donnée, la définition de cet indicateur pour les produits de haute technologie est :

\[
CONT = 100 \times \left(\frac{X^{HT} - M^{HT}}{(X + M)/2} \right) - 100 \times \frac{(X - M)}{(X + M)} \times \frac{X^{HT} + M^{HT}}{(X + M)}
\]

\(X^{HT}, M^{HT}\) : exportations et importations de produits de haute technologie de la zone considérée.

\(X, M\) : exportations et importations de produits manufacturés de la zone considérée.

Cet indicateur permet de comparer l'évolution du solde de produits de haute technologie à celle du solde manufacturier. Le premier terme est l'indicatrice de polarisation utilisée pour le graphique 6. Une valeur positive de cet indicateur indique que le solde des échanges de produits de haute technologie est plus favorable que ne le laisserait prévoir leur poids dans les échanges.

Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
Les États-Unis et le Japon, mais surtout les nouveaux pays industrialisés d'Asie connaissent une progression rapide de la part relative de leurs exportations de produits de haute technologie : ces derniers, pour lesquels cette part ne représentait que 9,4 % en 1967, loin derrière la moyenne mondiale (20,4 %) sont arrivés, en l’espace de quinze ans, à atteindre une position comparable à la moyenne mondiale.

Du côté des importations, ce sont les États-Unis qui se distinguent. Alors qu’en 1967, ils importaient relativement moins de produits de haute technologie que l'ensemble des autres pays, leur situation en 1983 n’est plus enviable.

Ainsi, le Japon et les nouveaux pays industrialisés d’Asie, à l’opposé de la CEE, expliquent leur percée par un dynamisme à l’exportation. Le déclin américain, pour sa part, provient plus d’une forte pénétration de son marché intérieur [10].

TABLEAU 3

Position des produits de haute technologie dans les échanges du Japon, des États-Unis, de la CEE et des NPI d’Asie (nomenclature « Majorité »).

<table>
<thead>
<tr>
<th>Premier critère :</th>
<th>Part des importations de produits de haute technologie dans l'ensemble des importations de produits manufacturés de la zone considérée.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1967 (en %)</td>
</tr>
<tr>
<td>Etats-Unis</td>
<td>15,5</td>
</tr>
<tr>
<td>Japon</td>
<td>24,6</td>
</tr>
<tr>
<td>CEE</td>
<td>20,7</td>
</tr>
<tr>
<td>NPI d’Asie</td>
<td>25,9</td>
</tr>
<tr>
<td>Monde</td>
<td>20,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deuxième critère :</th>
<th>Part des exportations de produits de haute technologie dans l'ensemble des exportations de produits manufacturés de la zone considérée.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1967 (en %)</td>
</tr>
<tr>
<td>Etats-Unis</td>
<td>32,3</td>
</tr>
<tr>
<td>Japon</td>
<td>21,8</td>
</tr>
<tr>
<td>CEE</td>
<td>21,2</td>
</tr>
<tr>
<td>NPI d’Asie</td>
<td>9,4</td>
</tr>
<tr>
<td>Monde</td>
<td>20,4</td>
</tr>
</tbody>
</table>

Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
Le renversement des situations japonaise, américaine et européenne

Les indicateurs utilisés jusqu’à présent fournissaient une comparaison des évolutions des différents pays, mais ne permettaient pas de situer directement ces pays les uns par rapport aux autres. Le graphique 8 indique la position de chacun sur le marché de la haute technologie, en rapportant le solde en produits de haute technologie au marché mondial de la haute technologie (somme des exportations).

La spécialisation réussie des Japonais dans ce domaine est d’autant plus évidente que les propriétés de l’indicateur (la somme sur tous les pays est nulle) accentuent les déclins américain et européen. Entre 1967 et 1983, il y a eu un renversement total de situation entre Japonais, Américains et Européens. Alors que les États-Unis et la CEE avaient près de 10 points d’avance sur le Japon en 1967, ces deux zones, avec un profil plus heurté pour les États-Unis, se retrouvent au même stade, loin derrière le Japon.

La hiérarchie des zones confirmée par l’étude des soldes bilatéraux

L’étude des soldes bilatéraux, toujours normés par le marché mondial des échanges de produits de haute technologie, permet d’introduire une hiérarchie entre ces zones, qui résume bien la percée des pays asiatiques et le déclin des pays occidentaux déjà souligné (graphique 9).

Ainsi, le Japon est excédentaire vis-à-vis des trois autres zones : États-Unis, CEE et nouveaux pays industrialisés d’Asie et l’excédent qu’il réalise vis-à-vis de ces zones représente plus de la moitié (56 %) de son excédent total, en 1983, contre moins de 40 % en début de période. La concentration des excédents vers ces pays s’est réalisée aux dépens des pays européens, vis-à-vis desquels le Japon était déficitaire en début de période.

Les nouveaux pays industrialisés d’Asie sont pour leur part excédentaires vis-à-vis des États-Unis et de la CEE. Ces excédents sont encore faibles et ne permettent pas de compenser le déficit vis-à-vis du Japon, qui par sa compétitivité propre et sa proximité géographique se révèle un concurrent particulièrement dangereux pour eux.

La décomposition par région du solde américain montre que seuls leurs échanges avec l’Europe sont excédentaires. Si tous les pays ont bénéficié de la perte de compétitivité américaine depuis le début de la décennie quatre-vingt, il n’en demeure pas moins que la pente globale de ces soldes est négative et semble prendre son origine bien avant.
En pourcentage

Graphique 8

Position sur le marché de haute technologie* (nomenclature « Majorité »).

* Pour chaque pays, le solde en produits de haute technologie est rapporté aux exportations mondiales de produits de haute technologie.

Source : CEPII, base CHELEM Commerce international (réseau harmonisé).

Enfin, la CEE est déficitaire vis-à-vis de ces trois zones. Il est intéressant de constater que la CEE a beaucoup moins bien profité de l’évolution du dollar que le Japon ou les pays d’Asie en développement rapide. Or, c’est pourtant face aux États-Unis que la CEE se bat le mieux. En effet, bien que son solde bilatéral avec les Américains soit encore largement négatif, la pente n’est pas décroissante comme celle de ses soldes avec le Japon et la zone asiatique.
Soldes bilatéraux des produits de haute technologie normés par les exportations mondiales des produits de haute technologie (nomenclature « Majorité »).

En pourcentage

9A : soldes bilatéraux avec le Japon

9B : soldes bilatéraux avec les États-Unis
Graphique 9 (suite)

9C: soldes bilatéraux avec les NPI d'Asie

9D: soldes bilatéraux avec la CEE

Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
Domination fragile de la RFA sur le marché européen

Pourtant, le déclin de la CEE traduit assez mal la réalité européenne. Le calcul et le classement des indices de spécialisation et des taux de couverture par produit fait fréquemment apparaître l'Italie (pour les appareils électroménagers, les machines spécialisées, l'armement, la chimie) ou la RFA (les appareils électriques, la chimie, les instruments de mesure et précision) et parfois les îles Britanniques (la construction aéronautique, le matériel informatique). A l'exception de certaines branches, la chimie et la construction aéronautique, la France n'apparaît pas. Les graphiques 10 permettent d'examiner plus précisément la situation européenne en traçant les soldes bilatéraux normés de chacun des quatre plus grands pays européens vis-à-vis des Etats-Unis, du Japon et des pays d'Asie en développement rapide. Il est clair que ces quatre pays sont tous en mauvaise position face aux autres partenaires. L'insistante montée en puissance japonaise se lit sur chaque graphique, l'Allemagne et les îles Britanniques étant particulièrement visées.

La France, l'Italie et la RFA améliorent leurs soldes — encore négatifs — vis-à-vis des États-Unis. La Grande-Bretagne et l'Irlande semblent connaître une détérioration de leur position, après leur vigoureuse remontée du début des années soixante-dix.

On ne peut pourtant étudier ces pays sans prendre en compte le marché européen lui-même. Le graphique 11 rassemble les flux bilatéraux entre ces quatre pays et ajoute deux de leurs débouchés : les autres pays d'Europe (Belgique, Luxembourg, Pays-Bas, pays scandinaves, pays alpins) et l'Europe méridionale (Espagne, Portugal, Grèce, Turquie, Yougoslavie, Israël...) :

— l'Europe est alors nettement divisée en deux : la RFA d'une part qui réalise sur tous les autres marchés des soldes positifs depuis 1967, et tous les autres pays d'autre part ;
— la France est dans la position la plus défavorable puisqu'elle n'est excédentaire que vis-à-vis de l'Europe méridionale ;
— les îles Britanniques sont excédentaires vis-à-vis de quatre zones en début de période : Europe méridionale, autres pays d'Europe, Italie et France. Alors que leur situation se dégrade avec la zone « autres pays d'Europe » et devient déficitaire à partir de 1981, elle s'améliore avec la RFA ;
— la RFA se distingue d'abord par le niveau de ses excédents (c'est le seul pays pour lequel l'échelle n'est pas la même dans les graphiques 11) ; les « autres pays d'Europe » accusent un solde très négatif vis-à-vis de la RFA, qui tend cependant à se resorber. La RFA a toujours la meilleure situation des pays européens mais cette situation s'est fortement dégradée au cours de la période étudiée. Si le solde bilatéral entre la France et la RFA est toujours favorable à cette dernière, il se rapproche néanmoins de zéro. Afin de connaître les causes de cette situation assez inattendue,

Le calcul de l’indicateur de position sur le marché de la haute technologie pour chacun des pays européens accentue cette idée : la RFA a incontestablement la meilleure position européenne, cependant c’est principalement elle qui impose à la courbe globale « CEE » sa pente négative. En effet, cette courbe « CEE » baisse de près de 10 points entre 1967 et 1983 (graphique 8) et la RFA explique à elle seule plus de la moitié de cette baisse suivie de près par les fies Britanniques. Ces deux pays sont en perte de vitesse principalement sur trois marchés : les autres pays d’Europe, les pays en voie de développement et le Japon.

En conclusion, il apparaît que le marché des produits de haute technologie s’est profondément modifié depuis la fin de la décennie soixante. Les produits de l’électronique jouent un rôle central dans la progression relative de leurs échanges. Le Japon est devenu sans conteste le leader sur ce marché et réalise des excédents importants avec les autres grands producteurs de haute technologie. Les nouveaux pays industrialisés d’Asie sont progressivement parvenus à se hisser parmi les grands, devenant même excédentaires vis-à-vis des Etats-Unis et de la CEE.

La situation des Etats-Unis s’est dégradée, particulièrement depuis le début de la décennie quatre-vingt du fait de la hausse du dollar. Celle-ci n’explique cependant pas tout. Le retrait relatif des Etats-Unis sur ce marché apparaît antérieur et, malgré certaines améliorations transitoires, leur situation se dégrade en fait depuis le début de la période étudiée. Cette dégradation n’explique cependant pas la détérioration d’ensemble du solde manufacturier : en fait, les exportateurs de produits de haute technologie se seraient plutôt moins mal défendus que les exportateurs d’autres produits manufacturés.

Enfin la CEE se trouve dans une position difficile. En particulier, la RFA a connu une dégradation notable de sa situation à la fois vis-à-vis des autres pays européens, et vis-à-vis du Japon et des pays en voie de développement.

2. Jusqu’à présent, les analyses ont été menées à partir d’un réseau d’échanges harmonisés, construit sur la base des déclarations des pays exportateurs et importateurs. Pour l’étude du solde bilatéral France-Allemagne, les résultats ont été confirmés en calculant ce solde d’une part avec les déclarations de la France et d’autre part avec les déclarations de la RFA. Dans les trois cas, l’amélioration de la situation française n’est pas contestable. Cependant, de nombreux problèmes de comptabilisation des produits de la construction aéronautique et spatiale entre la France et la RFA existent car ils ne déclarent pas de la même façon leurs échanges de ces produits. Suivant le type de déclaration utilisé, ce poste contribue largement à l’amélioration du solde franco-allemand, ou de façon très modérée. De même, suivant les cas, le seul poste permettant de réaliser un solde positif à la France est FN (matériel de télécommunication) ou FO (matériel de bureau). Ces différences de déclaration entre les deux pays ne modifient pas le résultat souligné dans le corps du texte : l’amélioration de la situation française pour presque tous les produits.
GRAPHIQUE 10

Les soldes bilatéraux des produits de haute technologie des quatre principaux pays européens vis-à-vis des États-Unis, du Japon et des NPI d'Asie, normés par les exportations mondiales de haute technologie (nomination « Majorité »).

En pourcentage

RFA

FRANCE
Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
GRAPHIQUE 11

Les soldes bilatéraux des produits de haute technologie intra-européens, normés par les exportations mondiales de haute technologie (nomencature « Majorité »).

En pourcentage
* L'échelle du graphique de la RFA n'est pas la même que celle des graphiques des trois autres pays.
** Autres Europe désigne : Belgique, Luxembourg, Pays-Bas, pays scandinaves et alpins.
Europe méridionale désigne : l'Espagne, le Portugal, la Grèce, la Turquie, la Yougoslavie, Israël, Europe n.d.a.
Source : CEPII, base CHELEM Commerce international (réseau harmonisé).
BIBLIOGRAPHIE

